Plastics from Pollution

The Market

The carbon markets across the world were valued €98 billion in 2011, up 4 percent
compared to 2010. The European Union Emissions Trading System (ETS), the world’s
biggest carbon market is good for €76 billion. The overall traded volume in EU Allowances
(EUA) reached 6 billion tons last year, a 17 percent increase over 2010. The EUA prices
dropped to €6.3 per ton, half their value a year earlier. The UN issued Certified Emission
Reductions (CER) were valued last year at €17.8 billion, down 2 percent from 12 months
earlier. The North American carbon market also declined in value from €367 to €221 million
for 2011.
While there is a price on carbon under the climate change schemes, there is also a market
for purified carbon dioxide (CO2). The CO2 market for hospital uses is forecast to reach $292
million by 2017. The biggest industrial consumer of CO2 is the soda drinks industry.
The CO2makes the drinks more acid, tastier and the carbonic gas also serves as a preservative.Since drinks hold more CO2 at low temperatures than at higher temperatures, the drink makers suggest that their products are preferably served very cold offering the customer a stronger taste. A company like Pepsi sold one billion cases of fizzy cola last year, consuming an estimated 160,000 tons of pure CO2. Worldwide, well over a million tons of CO2 is pumped into soft drinks which are all subsequently released back into the environment. The cost of pure CO2 delivered liquified at the factory can reach €2/kg.
Attempts to connect the high level of emissions from energy and industry by burning fossil
fuels with this industrial demand was originally received enthusiastically by all parties, until problems with quality control forced the industry to retreat from the recycling of low
concentration CO2 from energy generation, industrial and agricultural processes like the
making of magnesium from dolomite or the burning of lime for cement. The demise of this
opportunity to channel one million tons of CO2 from the environment to the industry, offered on the other hand fresh growth opportunities for traditional gas companies like Air Liquide,the largest supplier in the sector with nearly €5 billion in turnover.

The Innovation

The use of CO2 as the by-product of industrial and agricultural processes requires a major
breakthrough since the discovery of contaminated carbonic gas in Coca Cola drinks in
Belgium caused uproar questioning the quality control of major corporations. Where as there are numerous companies prepared to undertake the concentration and the purification of food grade quality CO2, the supply chain management of multinational corporations prefer to opt for the extraction of the gas from the production of hydrogen or ammonia from natural gas or coal, and recently from the fermentation of sugar cane into ethanol. Corn to ethanol also releases large volumes of CO2 increasingly recovering it for industrial use.
Unfortunately, corn as a fuel and a source of carbonic gas competes with food. Therefore,
even when the raw materials are from a biological source, it cannot be considered
sustainable.
Geoffrey Coates was born in Evansville, Indiana. He obtained a degree in Chemistry from
Wabash College (Indiana), and graduated in 1994 from Stanford University, California in
inorganic chemistry. He undertook a post-doctorate at California Institute of Technology.
Since 1997, Geoff is a member of the Cornell University Faculty. He built up an academic
career as leader in the field of polymer synthesis with an emphasis on catalytic
transformations. He observed that the predominant source of carbon for approximately
30,000 chemical compounds are produced worldwide from a basic set of around 300
chemical intermediaries. Ultimately, nearly all these intermediary molecules come from fossil fuels. Geoff was interested to find new routes to take bio-renewable resources into polymers.
He realized that the key to success is not the availability of the raw materials, but rather the identification of catalysts that exhibit the reactivity required for polymerizing CO2.
Carbon dioxide is an ideal feedstock since it is abundant, inexpensive, low toxic and non-
flammable. Geoff observed that Nature uses CO2 to make over 200 billion tons of glucose by photosynthesis each year, but chemists had until recently little success in developing a
process that exploits this attractive raw material. Geoff and his team developed zinc- and
cobalt-based catalysts that convert CO2 under mild conditions into an intermediate feedstock for chemicals products. The opportunity to recover both the zinc and cobalt-based catalysts is a challenge that still needs to be overcome in order to make this a closed-loop operation that does not increase our already excessive reliance on mining.
Geoff built up a strong research team at the University of Cornell. However the scope and
the depth of these catalysts, and the need to take this innovative approach to polymers from greenhouse gases to market, required special attention. He went on to create Novomer (newpolymers) based on an exclusive license to the catalyst patents from Cornell, and mobilized $6.6 million in investments including from DSM the Dutch chemical group. This was an ideal partner in search for innovations since the management decided that 50 percent of all its total sales will be from ecoproducts by 2015. Physics Ventures, the spin-off fund from Unilever matched the investment from the DSM group.

The First Cash Flow

The Novomer team has successfully transferred the catalyst technology from the laboratory to the demonstration scale and is now developing the capability for both batch and continuous large scale commercial production. The portfolio of opportunities is so vast that the product developers are testing the CO2
-based polymers in a wide range of applications including thermoplastics, binders, electronics, coatings, surfactants and foams. The opportunity to replace blow molded bottles not only caught the attention of DSM, but also of Unilever, one the world’s largest consumers of plastics. Tests by Unilever, and its declaration of interest in this novel way of converting pollution into plastics was instrumental for Novomer in getting an $18.4 million grant from the United States Department of Energy to pursue this pathway to commercialization. The test production of extruded thin film offered another component in the overall drive to have packaging produced from pollution. Geoff and his team got the necessary financial breathing space to get the products and the production processes right.

The Opportunity

Unilever sees a great benefit in producing packaging that is cost competitive without
subsidies, carbon taxes or a cap and trade system. This is not because the company is
against, the future of these political decisions is uncertain and therefore business cannot rely on innovation as a strategic option when its final faith is determined by politics and
international agreements. The Novomer owns a platform technology that goes beyond
packaging. It could redefine hundreds of products as diverse as diapers or paints. Now, we
see the opportunities to combine clusters of technologies on this innovative platform driven by this novel insight in catalysts. Competing on the market without subsidies, converting waste into a resource, and perhaps even get paid to take it out of the air, are typical characteristics that strengthen the Blue Economy proposal.
GUNTER PAULI

Nuclear’s Exit by Gunter Pauli

This article introduces a creative approach to the exit of nuclear power as one of the
100 innovations that shape « The Blue Economy ». This article is part of a broad effort
to stimulate entrepreneurship, competitiveness and employment
.

The Market

There are 442 nuclear power stations operational in 30 countries generating 375GW of
energy. There are 16 nations constructing 65 nuclear plants for an additional 63GW. China is
building 27 new plants, Russia 11. The United States operates with 104 the largest number
of nuclear energy generators, well ahead of France (58) and Japan (48 taking the defunct
plants in Fukushima into account). Some 212 plants are older than 30 years and while there
is no absolute science on how long these nuclear centers are safe to operate, the German
Chancellor Angela Merkel set the stage by ordering all plants older than 30 years closed
indefinitely. The European Union operated in 2010 143 plants down from its peak of 177 in
1989.
The relative decline of nuclear had been cast in stone well before the Fukushima disaster.
Lithuania and Italy decided to exit nuclear altogether, while Finland laments that the 1.6GW facility being built by French (AREVA) and German (Siemens) industries is now 5 years behind schedule and has a +70% cost overrun. Solely the delays impose an extra annual bill of €1.3 billion on the consumers, without providing for the increased capital costs. The latestplant ordered by Georgia Power in 2010 is budgeted at $17 billion. The investment cost per kilo Watt hour (kWh) before March 11, 2011 was estimated at $7,000. However the additional safety measures that will be imposed are likely to increase the cost to $10,000 per kWh. It is said that new nuclear plants will be capable of providing base load energy at 5.9cents per kWh. The real cost – stripping nuclear of all its subsidies, depreciation advantages, insurance protection, financing support and waste disposal arrangements is closer to 25 or even 30 cents kWh. Nuclear energy not only enjoys limited liability covered by society, nuclear on top of this is not competitive.
Therefore it is no surprise that in spite of the massive subsidies and legal protection, in 2010, installed capacity for renewables, solely covering wind (193 GW), waste to energy (65 GW), hydropower (80GW) and solar (43 GW) globally surpassed nuclear (375 GW), well before the trilogy of disasters demonstrated that the impossible does happen. Now that the Pacific and Indian Ocean rims are off-limits for any new nuclear power project, the question is how will the world go forward in its quest to generate renewable and affordable energy?
By Gunter Pauli
The Innovation
The Blue Economy proposes that we use what we have and that we study the
co
mpetitiveness of each innovation without expecting subsidies. If in the end the subsidies
are offered does not matter, the key is to succeed in the acid test: are there renewable
energy solutions that are truly affordable. Over the past months I presented a portfolio of
technologies through the Blue Economy Innovations program. These breakthroughs have not
received much attention probably because these require a complex know-how. However if
deployed as a cluster, this handful of sources of heat and electricity will redraw and
strengthen the present landscape of renewable energies. The three innovations are: a)
vertical wind turbines placed inside existing high voltage transmissions masts (Case 11), b)
redesigning existing municipal waste water treatment (MWWT) plants to combine water
treatment with organic municipal solid waste to produce biogas (Case 51), and c) the
combined heat and power generation with double-sided PV wafers placed inside a recycled
container equipped with tracking optics eliminating all moving parts (Case 53).
If we are serious about embarking on a renewable energy strategy without the caveat of
incalculable risks related to nuclear, then we have to go beyond the present mix of solar,
wind, hydro and waste to energy. Whereas these four energies spearheaded the renewables
over the past three decades, we need to embrace additional opportunities that are immediate
and cheaper. It is here that a creative approach to the use of existing facilities like MWWT,
and pylons come into play.
Let us jointly run the numbers. If Germany were to complement 500 of its 9,600 MWWT with
highly efficient biogas generators based on the Scandinavian Biogas know-how
benchmarked in Ulsan, Korea, then the potential baseload supply could reach as much as
5GW at an estimated total investment cost of €10 billion. This capital expenditure is roughly 5
times lower than nuclear and the time between decision and on-stream electricity is limited to
two years compared to a decade, also five times better, thus offering a much better cash
flow. Biogas has a secure and predictable generation – no one doubts that organic waste and
waste water will be in permanent supply – and therefore provides stability to the grid.
If in addition, Germany could install inside one third of its 150,000 high transmission masts
vertical turbines designed by Wind-it (France), then it could generate another 5GW, at
approximately one tenth of the cost of nuclear or €5 billion in total.
There are 1,900 landfills in Germany. If only 20 hectares at 200 of these defunct portions of
the landfills were covered with the combined heat and power generators from Solarus AB
(Sweden) that generate per hectare equipped with 2,000 units (100 rows of 20) 1,830 kWt
and 1,360kWe, then the potential energy supply increases with another 5.44 GWe and 7.32
GWt. The heat can be used to reduce the largest consumer of electricity in households:
warming up water. If the life of these panels were more than 20 years, then the cost per kWh
is under one Eurocent!
T
he First Cash Flow
The daily demand for electricity in Germany is approximately 70 GWh with peaks of 80 GWh.
N
uclear energy represents +20 percent, or about 15 GWh. The calculations above indicate
that even with only a fraction of productive use of the existing infrastructure it is possible to
replace all nuclear (5+5+5.4 GW). However, benchmarked analyses indicate that the cost of
production for these three energy sources is at or below 2 cents per kWh. The present
transfer cost in Germany for nuclear to the grid is 5.6 cents per kWh. At such low cost,
financing represents no problem and considering the speed with which these systems can be
installed, one can even plan the phasing out nuclear within the next 3 to 5 years, provided
one involves the local decision makers in charge of operating landfills and MWWT. The
unions are all in favor.
T
he Opportunity
The obvious additional benefit is the generation of jobs. And the three technologies retained
a
re only a few of the broad portfolio of potential breakthroughs. Imagine that all railways and
freeways were equipped with the Wind-it technology? Imagine that all major waste water
plants of industrial food processing companies adopted a biogas strategy? Imagine that half
of German households were to substitute electric water heating with luminescent thermo-
syphons, reducing household consumption with 15 percent? Germany which is already a
world leader in the export of green technologies, could now even position itself as the world’s
largest exporter of green energy, strengthening its metal, machinery and renewable energy
sector which relies on a strong tissue of middle sized companies. However, the most
powerful shift in the design of an exit strategy for nuclear is that the price difference between
2 and 5.6 cents (3.6 cents per kWh) for the 15 GW of nuclear to be replaced, accumulates
each year into approximately €4.7 billion. This cash flow, generated by the system thanks to
the efficiencies possible by smartly exploiting an available infrastructure with simple
technologies could be sufficient to finance the exit of nuclear and the financing of the
additional capital requirements over a 10 year period.
Now that it seems that the cash is available, a consensus could emerge whereby energy
companies and the communities with a large exposure to investments in nuclear power could
be provided an exit based on the net present value of their assets – and actually get a pre-
agreed payment for discontinuing nuclear energy. And while the forced closure of the oldest
plants already knocked 20-25 percent of their value and the present uncertainty is likely to
cause a further downward pressure on their shares (TEPCO – the owner of the Fukushima
nuclear power stations already lost 75 percent of its market capitalization), it would not be
difficult for financial engineers to come up with a package solution that permits the exit from
nuclear through a win-win strategy, simple broadening the benefits for all, reducing risk and
embracing innovations that are mature for implementation.
S
ubsequently, Germany could even become the world’s financial hub, financing the exit of
nuclear based on consensus and cash flow. This is the ultimate objective of the Blue
Economy: respond to the basic needs of all with what we have, offer the necessary products
and services that are good for your health and the environment at a lower cost, while building
up social capital. It seems like we see how this can be achieved – quicker than we ever
thought.
GUNTER PAULI

La voiture bio-sourcée a… 73 ans

La voiture bio-sourcée a… 73 ans

1941, la carrosserie bio-sourcée est au point, avec la Hemp Body Car de Ford.

Dès les années 1930, Henry Ford avait mis ses ingénieurs au défi de développer une voiture 100 % naturelle, et ils y sont arrivés en 1941 ! Mais trop en avance sur son temps, le projet de voiture en chanvre a été enterré avec l’entrée des Etats-Unis dans la seconde Guerre Mondiale.

À l’heure où constructeurs et équipementiers nous vantent les mérites des matériaux bio-sourcés dans les voitures du futur, force est de constater que l’approche n’est pas nouvelle ! Ainsi Henry Ford, l’un des grands visionnaires de l’automobile du XXe siècle, demanda-t-il au début des années 1930 à ses bureaux d’études de développer une voiture 100 % naturelle. Une démarche d’autant plus naturelle pour lui qu’il était proche du monde agricole auquel il fournissait déjà beaucoup de tracteurs.

C’est ainsi que fut présentée le 14 août 1941 la Hemp Body Car (la voiture à carrosserie en chanvre) développée sous la houlette de Lowell Overly. Si le châssis et quelques renforts étaient encore métalliques, celle-ci disposait d’une carrosserie entièrement réalisée en matériau plastique obtenu à partir de graines de chanvre et de soja, renforcé par des fibres de sisal et de paille de blé. De fait, le matériau développé par les chimistes de Ford comportait 70 % de cellulose et 30 % de résine phénolique. Selon les sources, il semble que la cellulose utilisée était issue à 50 % de la paille, 10 % du chanvre et 10 % de la ramie (ortie de Chine).

Des gains importants en fabrication

Pour la réaliser, 14 panneaux moulés en forme de 3/16 de pouce d’épaisseur (4,76 mm) étaient assemblés sur une structure tubulaire. Cette carrosserie était plus légère et plus résistante qu’une carrosserie acier de l’époque, et aussi moins chère à fabriquer. Dans une interview accordée au New York Times lors de la présentation, Henry Ford estimait : « Les matériaux plastiques peuvent coûter un peu plus cher à fabriquer que l’acier, mais nous anticipons des économies très importantes sur toutes les opérations de peinture et de finition ». Et de fait, la Hemp Body Car devait être proposée à 900 dollars – contre 1 350 dollars pour un modèle équivalent en acier. De plus, la carrosserie reprenait sa forme initiale après un choc et ne rouillait pas. Enfin, tous les vitrages étaient réalisés en acrylique. Au total la Hemp Body Car pesait environ 1 000 kg contre 1 500 kg pour une voiture équivalente de l’époque.

Mais le recours aux biomatériaux ne s’arrêtait pas là. Ainsi les pneumatiques étaient-ils composés d’un mélange de substances naturelles inventé par Thomas Edison, qui était un grand ami d’Henry Ford. Enfin, le carburant utilisé par le moteur V8 de 60 cv était de l’éthanol, obtenu lui aussi à partir du chanvre.

Seulement Henry Ford n’avait pas prévu que les Japonais attaqueraient Pearl Harbor le 7 décembre 1941, entraînant les Etats-Unis dans la seconde Guerre Mondiale, et envoyant le prototype au placard. Et lorsque celle-ci se terminera, Henry Ford, alors âgé de plus de 80 ans, aura passé la main. Les aciéristes qui avaient aidé à gagner la guerre régnaient en maîtres et l’utilisation de ressources renouvelables était du domaine de l’utopie.

Les temps ont changé et la prise de conscience de la fragilité de notre écosystème est en bonne voie. Alors le chanvre peut revenir sur le devant de la scène automobile avec par exemple l’annonce de la création de Automotive Performance Materials (APM) par Faurecia et la coopérative agricole Interval.

Et ça, c’est nouveau !

Jean-François Prevéraud

source : http://www.industrie-techno.com/la-voiture-bio-sourcee-a-73-ans.33285

Un événement historique: Premiere application industrielle de la fusion froide

Ceci est la traduction libre d’un article du Blog de Mats Lewan(*),

Mats Lewan(*) est un journaliste d’investigation scientifique suédois, qui a suivi les expériences et réalisations techniques de fusion froide d’Andrea Rossi depuis 2011. Il en a écrit un livre intitulé “An impossible invention”(**).

Cet article concerne la fin d’un test en milieu industriel d’une centrale thermique utilisant la fusion froide, qui a duré un an.

 

Le 17 Février, 2016,

Un test commercial de 350 jours d’une centrale thermique utilisant 4 reacteur E-Cat d’une puissance totale d’un mégawatt (1MW) est maintenant terminé.

L’événement doit être considéré comme historique car c’ est la première fois qu’une quantité d’ énergie industrielle est produite sur une si longue période avec LENR (****),un genre d’énergie nucléaire sans rayonnement mais pas encore expliquée scientifiquement.

Pour être clair, le rapport de l’essai d’un an, qui a été contrôlé par un important institut de certification indépendant, ne sera publié que dans environ un mois, et jusque-là aucune information officielle n’est prévue sur le résultat du test. Cependant, plusieurs sources m’ont dit que le test a été un succès.

Les sources,ayant visité l’usine de test m’ont dit que le COP, coefficient de performance, à savoir le rapport entre la puissance émise et la puissance utilisée pour le contrôle, était de l’ordre de 20 à 80, ce qui signifie que la centrale thermique consommait de 12 a 50 kW et produisait près de 1,000 kW- correspondant a la consommation moyenne d’environ 300 ménages occidentaux, y compris l’électricité, le chauffage des locaux, chauffage de l’eau et de l’air conditionné.

On m’a également dit que la masse totale des éléments du combustible, pour la plupart inoffensifs tels que le lithium, l’hydrogène et le nickel, était de l’ordre de quelques dixièmes de grammes, correspondant au brevet accordé a Andrea Rossi (*****) sur cette technologie . Apparemment,la charge n’a jamais été changée au cours de l’année du test. Après la fin du test les réacteurs ont été rechargés pour continuer leur opération.

Tout cela sera confirmé par l’institut indépendant, qui a enregistré les flux et températures et a vérifié 24 heures sur 24 l’installation thermique avec des caméras vidéo.

Le test a été entrepris par Andrea Rossi et son partenaire industriel américain – Industrial Heat – et ,selon Rossi, la commercialisation de réacteurs thermiques industriels similaires sera lancée dès que possible, à condition que le résultat de l’expertise soit jugé positif. Industrial Heat a acquis le droit de produire et de vendre la technologie E-Cat, pour autant que je l’ai entendu dire, en Amérique du Sud,du Nord, et Centrale, en Chine, en Russie, a l’Arabie Saoudite et les Emirats Arabes Unis.

 

Inutile de dire que les conséquences d’une telle source d’énergie pour le monde seront énormes.

Les conséquences pour l’industrie, la finance et pour la société seront au centre du Symposium Mondial de la nouvelle énergie « NewS », qui se tiendra en Suède, à Stockholm le 21 Juin, 2016, à condition que le rapport officiel de l’essai soit clairement positif. Nous attendons donc tous ce rapport, mais personnellement, je vais mettre le champagne au frais dès maintenant.

 

* https://animpossibleinvention.com/

** An impossible invention https://animpossibleinvention.com/blog/

*** http://ecat.com/

**** LENR Low Energy Nuclear Reactions, appelé  également CF Fusion Froide

***** Brevet: http://ecat.com/news/e-cat-patent-granted-by-uspto